IIT Guwahati and ISRO uncover X-Ray polarization
IIT Guwahati and ISRO researchers have detected polarized emissions from a black hole source that exists beyond the Milky Way Galaxy through a technique called X-ray polarimetry.
Large Magellanic Cloud X-3 (LMC X3) is a binary star system consisting of a black hole and a ‘normal’ star that is much hotter, bigger, and more massive than the Sun, say researchers from U R Rao Satellite Centre, Indian Space Research Organisation (ISRO), Bengaluru.
It is located in a satellite galaxy of our Milky Way, nearly 200,000 light-years away from Earth. Since its discovery in 1971, it has been observed by various satellites, say sources from IIT Guwahati.
However, there has been a gap in understanding the polarization properties of X-rays emitted by highly energetic objects like stellar mass black holes in the universe, say sources from IIT Guwahati.
Importance
Highlighting the importance of this research, Prof Santabrata Das, Department of Physics, IIT Guwahati, said, “X-ray polarimetry is a unique observational technique to identify where radiation comes from near black holes.
LMC X-3 emits X-rays that are 10,000 times more powerful than those from the Sun. When these X-rays interact with the material around black holes, specifically when they scatter, it changes the polarization characteristics, i.e. degree and angle, said Prof Santabrata of IIT Guwahati.
This helps in understanding how matter is drawn toward black holes in the presence of intense gravitational forces, he said.
Study
The researchers from IIT Guwahati and ISRO studied LMC X-3 using The Imaging X-ray Polarimetry Explorer (IXPE), the first mission of NASA to study the polarization of X-rays from celestial objects.
They also made use of the simultaneous broad-band coverage of Neutron Star Interior Composition Explorer (NICER) Mission and Nuclear Spectroscopic Telescope Array (NuSTAR) Mission to constrain the spin of LMC X-3, say sources from IIT Guwahati.
Our observations indicate that LMC X-3 likely harbours a black hole with low rotation rate, surrounded by a slim disc structure that gives rise to the polarized emissions, he said.
Study of IIT Guwahati and ISRO researchers
The study has been published in the Monthly Notices of the Royal Astronomical Society: Letters and was funded by the Science and Engineering Research Board (SERB), Department of Science and Technology, India.
The research team is led by Prof. Santabrata Das from IIT Guwahati and Dr. Anuj Nandi from URSC, Bangalore, and includes their research scholars, Mr. Seshadri Majumder (IIT Guwahati), and Mr. Ankur Kushwaha (URSC).
These findings open a new window to investigate and understand the nature of astrophysical black hole sources.
S Vishnu Sharmaa now works with collegechalo.com in the news team. His work involves writing articles related to the education sector in India with a keen focus on higher education issues. Journalism has always been a passion for him. He has more than 10 years of enriching experience with various media organizations like Eenadu, Webdunia, News Today, Infodea. He also has a strong interest in writing about defence and railway related issues.